您的位置:首页 > 金融 >

环球简讯:一元二次方程根与系数的关系题目及答案

2023-05-24 15:54:11 来源:互联网

评论
导读 来为大家解答以上的问题。一元二次方程根与系数的关系题目及答案这个很多人还不知道,现在让我们一起来看看吧!1、根与系数的关...

1、根与系数的关系简单相关系数是用来度量定量变量间的线性相关关系。

2、复相关系数是因变量与多个自变量之间的相关关系。


(相关资料图)

3、例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关系。

4、韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。

5、扩展资料:偏相关系数:又叫部分相关系数:部分相关系数反映校正其它变量后某一变量与另一变量的相关关系,校正的意思可以理解为假定其它变量都取值为均数。

6、偏相关系数的假设检验等同于偏回归系数的t检验。

7、复相关系数的假设检验等同于回归方程的方差分析。

8、典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性无关的综合指标.再用两组之间的综合指标的直线相关系敷来研究原两组变量间相关关系可决系数是相关系数的平方。

9、意义:可决系数越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。

10、观察点在回归直线附近越密集。

11、一元二次方程根与系数的关系是什么α,β是方程X²+2X-7=0的两个实数根,则:α+β=-2 α*β=-7α²+3β²+4β=α²+β²+2β²+4β=(α+β)²-2α*β+2β²+4β=18+2β²+4β 而α,β是方程X²+2X-7=0的两个实数根则β²+2β-7=0 即β²+2β=7 2β²+4β=14 所以 α²+3β²+4β=18+14=32α²+3β²+4β=α²+β²+2β²+4β=(α+β)²-2α*β+2β²+4β其中: α+β=-2 α*β=-7 β是方程X²+2X-7=0的两个实数根 β²+2β-7=0 β²+2β=7 2β²+4β=14 原式=4+14+14 =32凡此类问题,都是要把α²+3β²+4β用已知的α+β 和α*β 来表示,楼上正解。

本文到此分享完毕,希望对大家有所帮助。

[责任编辑:]

相关阅读

参与评论

关于我们| 广告服务| 隐私政策| 服务条款| 备案号:琼ICP备2022009675号-29 联系QQ:5 0 8 0 6 3 3 5 9

Copyright @ 2008-2015 www.ccnf.cn All Rights Reserved 中国经营网 版权所有